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J.  Phys. A: Math. Gen. 19 (1986) 873-885. h in ted  in Great Britain 

Diabolical points in one-dimensional Hamiltonians quartic in 
the momentum 

M V Berry and R J Mondragon 
H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 lTL, UK 

Received 5 August 1985, in final form 24 September 1985 

Abstract. We study the family of quantal Hamiltonians defined on - 1  < x < +1 by 

which depend via the boundary conditions on four real parameters a, 6, c, d. The spectra 
of states with even and odd parity have degeneracies with codimension three, that is, on 
lines in a6cd space; near the degeneracies, the level splitting has a double-cone.(diabolical) 
structure, and during a circuit of a diabolical point in the subspace of real H (i.e. d = 0) 
the wavefunctions change sign. These are generic properties which in this model can be 
studied analytically. The degeneracies could be realised classically in vibrating beams with 
positive and negative linear feedback in the boundary conditions. 

1. Introduction 

Almost all stationary bound quantal systems have non-degenerate energy levels. It is 
however possible to produce degeneracies (of th,e type usually called 'accidental') by 
varying several parameters in the HamiltonianAH. Von Neumann and Wigner (1929) 
showed that two parameters are required if H is real symmetric, and three if is 
complex Hermitian. Teller (1937) showed that in the space of energy and parameters 
the energy level surfaces near the degeneracy have the form of a double cone, that is, 
a diabolo. Therefore degenerate Hamiltonians can be described as diabolical points 
(Berry 1983) in parameter space. 

This generic structure of degeneracies in quantum mechanics cannot be illustrated 
by one-dimensional Hamiltonians of the familiar form p 2  + V ( x )  with the solutions of 
Schrodinger's equation restricted by boundary conditions at two points, because 
degeneracies are absolutely forbidden in such systems. The reason is that for given 
energy E the solution satisfying one boundary condition is unique and either does 
satisfy the other boundary condition (i.e. E is an eigenvalue) or does not (i.e. E is 
not an eigenvalue). Therefore it was thought necessary to increase the dimensionality 
in order to find degeneracies, and indeed by numerical computation Berry and Wilk- 
inson (1984) discovered diabolical points in the spectra of planar quantum triangles 
(vibrating triangular membranes). 

To obtain a more complete understanding of degeneracies, it is desirable to supple- 
ment genericity arguments and numerical exploration with a model for which exact 
analytical results can be obtained, and this is our present purpose. We will show that 
a suitable alternative to increasing the dimensionality from one to two is to remain in 
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one dimension and increase the order of f i  from p 2  to p4. In quantum mechanics 
such higher-order dependence can rise from p truncations of effective band Hamil- 
tonians for electrons in crystals with magnetic fields. There are several ways to introduce 
parameters {a , } ,  for example via a potential V(x; { a L } ) ,  but we find it simpler to consider 
the system as free ( V = 0) on the interval - 1 d x s 1 and introduce parameters into 
the boundary conditions at *l. 15 this way we will construct (9  2) a four-parameter 
family of Hamiltonian operators H ( { a , } ) .  

In § 3 we determine the degeneracies analytically, confirm that their codimensions 
accord with the Von Neumann-Wigner theorem in both the real and complex cases, 
and demonstrate the diabolical structure of the energy level surfaces. In 0 4 we find 
pairs of degenerate states and illustrate the sign change of states during a circuit of a 
degeneracy. Finally ( $  5) we show that these degenerate quartic Hamiltonians can be 
realised physically as vibrating beams with unusual boundary conditions. 

2. Quartic Hamiltonians 

When f i  = p4 the Schrodinger equation is (denotiflg derivatives by primes) 

+”” = E+ 1x1 s 1 (1) 
with boundary conditions chosen to ensure Hermiticity, that is 

(4lfil+) = dx 4*(x)+””(x) = dx + ( x ) ~ * ” ” ( x )  =(+lfil4)* (2) 

where 4 and + are any functions in the Hilbert space. Integration by parts gives 

G ( + l ) =  G(-1) (3) 

If the boundary conditions are to be applied separately to x = i l  (that is, if periodic 
boundary conditions are excluded), then G(+ l )  and G( -1) must vanish separately. 
Because 4 and + are independent this implies at least two relations between derivatives, 
which it is convenient to write as 

with M,j complex. Direct subsitution into (4) leads to 

M22=-M:l MI2 = MT2 M , ,  = MT,. ( 6 )  
These relations can be 5atisfied by different M,  at the two endpoints. However, 

by choosing MO to make H symmetric under reflection in x = O  we will produce a 
spectrum partitioned into states with even panty and states with odd parity, and we 
will be able to find diabolical points for each of these spectra, i.e. degeneracies between 
states of the same symmetry class. All such even Hamiltonians are generated by the 
following boundary conditions (which satisfy ( 6 ) )  

in which a, b, c, d are real. 
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Together wilh ( l ) ,  these conditions define our four-parameter famiiy of quartic 
Hamiltonians H ( { a , } )  with parameters {a , }  = ( a ,  b, c, d ) .  When d # 0, H is complex 
Hermitian; when d =0,  fi is real symmetric. 

3. Diabolical points 

For the even and odd states it will be natural to consider positive and negative energies 
separately, i.e. four cases in all. For each, the levels will be determined by an eigenvalue 
condition 

f(E; {at)) = 0. (8) 

For almost all { a i } ,  f has simple zeros at eigenvalues E, but at diabolical points { a ? }  
the zeros E *  are (at least) double, so that in addition to (8) we must have 

f E ( E ;  { a ? } ) = o *  (9) 

I f f  were a generic function, its real zeros E would coalesce and disappear as the 
parameters passed through diabolical values. But the eigenvalues of Hermitian 
operators are continuous functions of parameters and cannot disappear, so that f is 
not a generic function. Indeed, from the fact that the rate of change of eigenvalue 
with parameters, namely 

a E l a a i = - f a , l f E  

must remain finite, even at { a ? } ,  it follows from (9) that 

f a , { E * ,  {a? } )=O 

for each of the parameters ai. These relations greatly simplify the determination of 
diabolical points. 

For positive energies, the even solutions of (1) are 

$(x) = p cos kx+ v cosh kx (12) 

with 

E = k4.  (13) 

Eigenvalues k, and the coefficients p and v, can be determined from the boundary 
conditions (7). It is convenient to define rescaled parameters 

{A,}  = (A, B, C, D )  = (ak - ' ,  bk-3,  ck-2,  dkW2) .  (14) 

Direct substitution of (12) into (7) leads to the eigenvalue condition 

F (  k;  {A,})  = -( T +  [ ) (AB+ C 2 +  D2+ 1)+2tTA+2B+2(t - T ) C  = O  (15) 

T = tanh k t'tank. (16) 

where 

From the t periodicity we see that the eigenvalues form hypersurfaces in k, A, B, C, 
D space with k separation approximately given by T. It is necessary to consider only 
positive k. 
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The condition (15), involving the scaled variables, has the same form as (8), so 
that (using (11)) the diabolical points are {AT}, determined by 

Fk( k*; { A ? } )  = 0. (17) 

It is more convenient to use (1 1) directly, thereby giving the degeneracies parametrically 
as functions of k*. The results are 

A = 2 / (  T +  t )  

B = 2tT/(  T +  t )  

C = -( T -  t ) / (  T +  t )  

D=O 

where here and henceforth we abandon the * notation whenever this will not cause 
confusion. Direct substitution confirms that (15) and (16) are satisfied. 

Equatio?s (18) show that for every value of k there is one set of diabolical parameters 
for which H has the degenerate eigenvalue k As k increases from zero to infinity the 
diabolical points trace out a series of infinite lines in the four-dimensional parameter 
space ABCD, so that the degeneracies do indeed have the expected codimension for 
families of complex Hermitian operators, namely three. All the degenerate Hamil- 
tonians have D = 0, so that the infinite lines of diabolical points lie entirely in the ABC 
subspace and therefore do indeed have the expected codimension for families of real 
symmetric operators, namely two. Figure 1 shows the first two diabolical lines in the 
original abc space. 

Now we exhibit explicitly the diabolical structure of the eigensurfaces close to 
degeneracies. Choose one of the diabolical lines and fix the value of C* and thence 
that of k*, A*, B*, D*. Now move off the line, to parameters 

A = A* + AA B = B * + A B  D = D * + A D .  (19) 

k =  k*+Ak’ (20) 

This will lift the degeneracy and give eigenvalues 

which can be determined by expanding (1 5) about {AT}. Because of (17) and (1 1) it 
is necessary to go to second order, leading to the result 

where /I and v refer to A, B and D and all derivatives are evaluated at {A?} ,  k*. 
Evaluating the derivatives leads to 

Ak*=[4(1+t2)(1-T2)]-1[I-(t2+T’)AA+(2+t2- T2)AB 

& { ( I  - X ) [ (  T 2 +  t 2 )  AA-(2+  t’-  T 2 )  AB]’ 
+ X [ ( T 2 + t 2 )  AA+(2+t2 -T2)AB]’  

+4(1+ t 2 ) ( l -  T2)(  T +  t )2(AD)2}”2]  

x = ( I +  r 2 ) ( i  - T ~ ) (  T+ ~ ) ~ / [ ( 2 +  t 2 -  T ’ ) ( T ~ +  t ‘ ) ] .  

( 2 2 )  

( 2 3 )  
Now O S  X S 1, so that the level splitting is given by the square root of the sum of 
three squares and the eigenvalues are therefore (hyper)conical in ABCDk space. 

where 
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Figure 1. Lowest two diabolical lines for even (E) and odd (0) states, in parameter space 
of real Hamiltonians; the negative-energy parts of the lowest lines are shown broken. 

It is instructive to consiger the Hamiltonians with C = D = 0, i.e. the two-parameter 
family of real operators H(A, B). From (18), the degenerate eigenvalues k, are the 
solutions of 

(24) = tanh kj =tan kj i.e. kj 5 (j+i)lr - 2ej ( j  = 1 , 2 .  . .) 

where 

ej E exp[2r( j+t)]  

and the diabolical points in the AB plane lie at 

Aj = 1/ T, = 1 + 2/ej 

Bj= 17;.=1-2/ej. 

These all lie extremely close to A = B = 1; for example A, = 1.000 77 and Az = 
1.000 001 45. Figure 2 shows the lowest levels &(A) for B = B1, illustrating the fact 
that their approach and degeneration occur in a very small parameter region, outside 
which they vary slowly. 

For C = D = 0 the cones (22) become 

Ak; = {- Tf AA+ AB f [ c( Tj’ AA -AB)’+ (1 - c)( Tf AA+ AB)’]”2}/[2(l - Y)] 
= &ej{AB - AA f [(AA - AB)’+ (8/ej)(AA+ (27) 

Because 17;. is very close to unity (i.e. e, are large), the cones are extremely elongated 
in the direction AA = AB, their sections with constant splitting being ellipses with axial 
ratios close to d(2/ej). Figure 3 illustrates this. 
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Figure 2. Levels k, of even states as functions of parameter A, with B fixed at its diabolical 
value E ,  and C = D = 0. 

Figure 3. Conical structure near lowest even-parity diabolical point when C = D = 0. 

These results can be expressed in terms of the physical parameters { a i }  by using 
(14). The only subtlety is that the cones are sheared with respect to those given by 
(22) and (26), because away from {a:}  a fixed set of {Ai} corresponds to different 
values of { a , }  on each of the two sheets of the diabolo (which have different k values). 

For negative energies, the even solutions can be obtained from (12) by defining 

E E - K ~  i.e. k = K ei*’* (28) 
and scaled parameters (cf 14) by 

{ff ,}=(ff ,p,  7, 8 ) = ( U K - * ,  bK-3,CK-2, dK-*) 

i.e. 
= A  ei*/4 p = B e 3 i r / 4  = c e i n / 2  

It is also convenient to define, instead of (16) 
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SH = S i n h ( ~ J 2 )  CH = c o s h ( d 2 )  ss = sin( ~ d 2 )  cc = c o s ( ~ J 2 ) .  (30) 

Then the diabolical line expressed parametrically in terms of K can be obtained 
from (18) by direct substitution: 

a = J 2 (  CH + cs )/ ( SH + ss ) 
p=-J2 (CH-cs ) / (SH+ss )  

y = -(SH - S S ) / ( S H  + ss) 
s =o. 

As for positive energies, all diabolical points lie in the subspace a, b, c of real operators. 
As K* increases from zero to infinity the parameters trace out a single diabolical 

line which joins smoothly (figure 1) with the lowest of the positive-energy ones at 
E* = 0 (for which a = 1, b = c = 0). For all th$se negative-energy diabolical points, the 
degeneracy occurs for the ground state of H. On the other hand, when E *  > 0 the 
degeneracies occur for excited states. This difference does not imply a higher-order 
(e.g. triple) degeneracy at E *  = 0, because the extra levels come from E = -m. This 
is clear from figure 4, which shows the levels E for the degenerate Hamiltonians with 
parameters {a:}  = { a , ( E * ) } .  

The odd solutions of (1) for positive energy are 

+(x) = p sin kx + vsinh kx (32) 

and arguments precisely similar to those employed in the even case lead to the following 
diabolical lines, analogous to (18): 

A = 2 t T / ( t -  T )  

B=-2 / ( t -  T )  

c = -( t + T ) /  ( t - T) (33) 

D = O .  

The lines are qualitatively similar to those for the even case, as discussed following 
(18); the lowext two are shown in figure 1. 

The odd solutions for negative energy can be found by the substitutions (29) and 
(30), and the single diabolical line, analogous to (31), is 

ff =J2(CH-cs ) / (SH-ss )  

p = -J2( CH + cs)/( SH - ss) 

y = -( SH + ss)/( SH - ss) 

s =o. 

(34) 

As for the even solutions, this line connects with the lowest of (33) at E = 0, this time 
at a = - b  = - c  = 3. 
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J 
- E *  

Figure 4. Even states E of Hamiltonians on the diabolical lines, as a function of the energy 
E* at which two of the states are degenerate for -20 OOO < E, E* < +20 OOO. The corre- 
sponding parameters {a, (  E*)) are given by equations (14) and (18) (for E* > 0) and (29) 
and (31) (for E*<O). Note that the degeneracy line E = E* is isolated from the other 
states (no higher-order degeneracies), and that the figure is symmetric about E = E*. 

Finally, we note that all diabolical points, even or odd, with positive or negative 
energies, satisfy 

c 2 + a b =  E. (35) 

4. States close to degeneracies 

Here we consider only the even solutions; results for odd solutions are similar. We 
begin by studying the pairs of degenerate states on the diabolical lines. Pure cosine 
solutions ( U  = 0 in (12)) of (1) satisfy boundary conditions (7) provided 

c - a r k = - k 2  

b + k t c =  k3t (36) 

d = O  

where t = tan k. Eliminating f leads to (39, showing that pure cosine solutions satisfy 
the boundary conditions on the diabolical lines. Similarly, pure cosh solutions ( F  = 0 
in (12)) are also possible on the diabolical lines. 

The degenerate cos and cosh solutions are not orthogonal for finite parameter 
values, but it is easy to construct linear combinations which are. One such orthogonal 
normalised pair for the diabolical points labelled j in the ab plane (i.e. c = 0, equations 



Diabolical points in one dimension 88 1 

(24)-(26)) is 

where 

s, = sin k, S, 3 sinh k,. 

Close approximations (cf (25) and (26)) are 

cos kjx - (-1yd(2/ej) cosh kJx 
(1 - 1/ kj)’/* $1, = 

(1/d2) cos k,x - (2/de, )( -l)j( k, -;) cosh k,x 
[k,(l -5/2k, +3/2k:)]”* *2, = 

(39) 

These pairs of degenerate wavefunctions are shown in figure 5. It is evident that the 
states oscillate with constant amplitude and a frequency that increases slightly near 
x = 1 as the cosh term becomes appreciable. The other states t,h2, are concentrated 
near the boundary where their amplitude is large (-v‘k); away from x = 1 they have 
much smaller amplitude (-l/&%) and oscillate in phase with GI,. There is a semi- 
classical interpretation of the fact that some states are localised and others are not. 
The classical equation E =p4 has solutions for purely real and purely imaginary 
momenta p .  The former correspond to de Broglie waves and the latter to evanescent 
waves clinging to the boundary. For almost all parameter values all the states are well 
approximated by de Broglie waves and the evanescent waves make only a small 

Figure 5. Pairs of degenerate wavefunctions for even states with C = D = 0: (4) j = 1, ( b )  
j = 2 ,  ( c ) j = 3 .  
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contribution, as in Indeed, Bohr-Sommerfeld (or its equivalent, Weyl) quantisation 
(Berry 1983), which is based entirely on real p waves, predicts for the even and odd 
spectra the asymptotic k separation a-precisely concordant with the exact quantisa- 
tion formula (15) and its odd-parity equivalent. Exceptionally, however, waves which 
are entirely or almost entirely evanescent can satisfy the boundary conditions and form 
eigenstates, as in &,. 

During a circuit in parameter space close to a degeneracy, eigenstates are not single- 
valued but acquire a phase factor. In the general case (Berry 1984) of circuits involving 
complex Hermitian Hamiltonians the phase may take any value. In the special case 
of circuits involving only real Hamiltonians, the phase is a (corresponding to a sign 
change of the eigenstate) if the circuit contains the degeneracy, and zero if it does not 
(Herzberg and Longuet-Higgins 1963). Here we illustrate the real case for our quartic 
Hamiltonian with parameters c = d = 0 by calculating the coefficient p in (12) during 
a circuit of a degeneracy in the AB plane. 

From the boundary conditions it follows that 

p cosh k T - B  - - 
v cosk ( B - t ) '  

Expanding near the j th diabolical point (24)-(26) using the notations (19) and (20) 
gives 

1 + T2 -= J Ak*( 1 - Tj) -AB 
(1-T;) ( AB-Ak*(l+ T;) 

with Ak' given by the cone formulae (27). Normalisation of (12) gives, using the 
notation (38) 

4pvs,S, 1 = p  li' + v 2  I+- +- 
2(  (;I ( :;) k,T, 

and this, together with (41), determines p as a function of AA and AB, i.e. near the 
degeneracy. Now consider a small circuit parametrised by 0, i.e. 

AA = A COS 0 AB = A sin 8 (Os 6 27~).  (43 1 
then p ( 0 )  varies smoothly and vanishes only when the numerator of (41) does. For 
the positive sheet Ak+ of the cone this happens only when 

AA=-AB/Tf AB>O i.e. 6 = 3a/4.  (44) 
Therefore during a circuit of the diabolical point there is indeed only one sign change 
for p (  6 )  (and also one for v( e), at 0 = 77~14). For the negative sheet Ak-, the behaviour 
is the same except for a a rotation, i.e. p vanishes near 0 = 7 a / 4 ,  and v vanishes 
near 0 = 377-14, 

Figure 6 shows p ( 6 )  for circuits of the first two diabolical points. As expected, p 
changes sign near 8 = 3a/4 ,  but what is surprising is the high magnification (100 for 
j = 1, 50 000 for J = 2) required to reveal this, arising from the fact that p (  6 )  is very 
close to zero over a large angular range. This is a consequence of the cones' high 
eccentricity (figure 3)-a phenomenon already discovered for diabolical triangles by 
Berry and Wilkinson (1984). 

At least one member of any pair of orthogonal real states must have a zero. In 
particular this holds near the diabolical points with negative energy (equations (3 1) 
and (34)) where it implies the existence of Hamiltonians whose ground state has a 
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Figure 6. Coefficient p (  0 )  for circuit of diabolical points with c = d = 0 and ( a )  j = 1, ( b )  
j = 2. 

zero (nodal lines in the fundamental mode of a vibrating plate were discovered by 
Duffin (1962, 1974)). 

5. Diabolical vibrating beams 

Small displacements y ( x ,  t )  of a vibrating beam satisfy the biharmonic wave equation 
(Landau and Lifshitz 1959), namely 

p a 2 y / a t 2  = - YI a4ylax4 (45) 

where p is the linear density, Y is Young’s modulus and I is the second moment of 
area. Therefore harmonic vibrations 

(46) y ( x ,  t )  = $(x) cos ut 

satisfy ( l ) ,  with the frequency given by 

w 2  = ( YIE/p14)  (47) 

where I is the length of the beam. 
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Now suppose the beam is clamped horizontally at x = 0. Then the vibrations are 
the positive-energy, even-parity solutions of ( 1 ), which depend on the boundary 
conditions at x = 1. These consist of two relations between the following four quantities: 

displacement: $ ( I )  

( 4 8 )  
slope: *’( 1 )  

torque: YI*”( I )  
shear force: - YIQ”‘(1). 

Let these relations be given by (7 )  with c = d = 0, that is (after scaling by I )  

Now ( 2 4 ) ,  ( 2 6 )  and ( 1 4 )  show that degenerate vibration modes occur when the 
$”(U = ( a / I ) Q ’ ( O  $ “ ‘ ( I )  = (6 /13 )$ (1 ) .  (49) 

physical boundary conditions are 
shear force YIkj T, - -- - torque k.YI 

slope I T ,  displacement 
--J 

13 
- and 

The torque is destabilising (positive feedback) and the force is restoring (negative 
feedback). One way to realise these conditions is shown in figure 7.  The spring constant 
A (force/displacement) must be 

and the weights W and rod length do must satisfy 
A = YIk:T,/213= Y I ( j + a ) 3 ~ 3 / 2 1 3  ( 5 1 )  

Wdo=  YIki/21T, = YI(j+$).n/21. ( 5 2 )  
The degenerate modes have frequencies 

An experimental test of this theory could be made by periodically forcing the beam 
(for example by vibrating the clamp at x = 0) and determining the frequencies oj as 
resonances of the response function (which could be the RMS displacement at x = I ) .  
By varying A and do the diabolical structure of the spectrum could be studied. Because 
of mechanical dissipation it is probable that the Q of the resonances would be such 
that only the lowest degeneracies could be detected. The precise linear combination 
of modes that would be excited exactly at the degeneracies would depend delicately 
on how the beam was forced. 

Figure 7. Vibrating beam with feedback boundary conditions which can cause degeneracy. 
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6. Discussion 

We have shown that the energy levels of a quantal system inhabiting a finite line 
segment can be degenerate, provided the Hamiltonian has a higher than quadratic 
momentum dependence and thereby escapes the Sturm-Liouville straitjacket. The 
degeneracies can occur between states of the same symmetry, and are generic in both 
codimension and local diabolicity. 

In our example the parameters appear in the boundary conditions, but there is 
nothing special (except ease of calculation) about this choice, and we could for example 
have worked with H = p 4 +  V ( x ;  a, b )  where -cc < x < 03 and (in the real case) V is a 
potential depending on two parameters a and b. 

Another phenomenon which occurs generically but is forbidden in quadratic Hamil- 
tonians in one dimension is degeneracy of states with different symmetry, which requires 
only one parameter to be varied. This also can be made to happen with quartic 
one-dimensional Hamiltonians. One example is the analogue of a double well, where 
the potential is V = a 6( x )  and +( *l) = I+!/( f 1) = 0; this has degeneracies as the ‘barrier’ 
height a varies. 
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